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Theory of Periodic Dielect;c Waveguides
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Abstract—The propagation of electromagnetic waves along open
periodic, dielectric waveguides is formulated here as a rigorous
and exact boundary-value problem. The characteristic field solu-
tions are shown to be of the surface-wave or leaky-wave type,
depending on the ratio of periodicity to wavelength (d/h). The
dispersion curves and the space-harmonic amplitudes of these
fields are examined for both TE and TM modes. Specific numerical
examples are given for the cases of holographic layers and for
rectangularly corrugated gratings; these show the detailed behavior
of the principal field components and the dependence of wave-
guiding and leakage characteristics on the physical parameters of
the periodic configuration.

I. INTRODUCTION

THIN-FILM structures containing a periodic variation

along the film have recently been of considerable

interest in integrated optics because of the important role

they play in applications such as beam-to-surface-wave

couplers, filters, distributed feedback amplifiers and lasers,

nonlinear generation of second harmonics, and beam reflec-

tion or steering devices of the Bragg type. The periodic

variation is usually obtained by means of a dielectric

grating, which is superimposed onto the upper surface of a

layered configuration. This dielectric grating is in the

form of a low-loss layer whose appearance falls into one of

two categories: 1) the layer possesses parallel planar

boundaries and its periodicity is produced by a longitudinal

modulation of its refractive index (e.g., a bleached holo-

gram), or 2) the layer contains a homogeneous medium

but its upper boundary has a periodic variation (e.g., a

grooved profile obtained by etching). Both types of con-

struction of the dielectric layer are covered by the analysis

presented here.

The operation of devices containing a dielectric grating

depends on the properties of the electromagnetic fields

guided by the structure. These fields appear either as sur-

face waves, which travel parallel to the structure, or as

leaky waves, which are guided by the structure but radiate

or leak energy continuously into the exterior regions. Both

types of waves appear as characteristic (free-resonant)

solutions of the boundary-value problem prescribed by the

thin-film configurations. Such problems have recently been

considered [1 ]–[14] in the context of several specific

structures, but most of the investigations have employed

approximations that are too restrictive for many practical

cases. The more common approximation has been the
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assumption that the grating periodicity acts as only a

small perturbation in a configuration that, in the absence

of the grating, appears as a planar multi] ayered medium

[2], [~1, [51~ [9], [11], [12]. This approximation yields
good results only if the periodic change is sufficiently

small, so that its use may produce erroneous results in

many practical cases, such as thick corrugated gratings

having groove depths comparable to the wavelength

[13], [14], Another approximation has been the use of a

Rayleigh assumption which incorrectly neglects the

presence of incoming waves in the grating region [2], [4],

[8]. It has been shown [10] that this Rayleigh approxima-

tion may also result in serious errors if the periodic varia-

tion is not sufficiently small. It should also be pointed

out that most of the previous studies have developed their

analysis in the context of special cases, which usually

involved not more than three materials or layers; further-

more, some of these studies considered modes having one

polarization only (usually the TE type) rather than both

TE and TM polarizations.

The aim of this paper is to determine the wave-guiding

properties of a very important class of dielectric gratings

by utilizing a rigorous approach, which was briefly reported

on recently in the specific context of modulated layers [6]

and corrugated gratings [13], [14]. This approach does

not employ any of the approximations mentioned above

and it can be generalized to practically any planar dielec-

tric grating. The generalization is accomplished by first

considering both TE and TM modes in a canonic configura-

tion consisting of a periodic layer bounded by two dif-

ferent media; the analysis is thereafter extended to struc-

tures with an arbitrary number of layered media, of which

the grating configurations examined in the past represent

special cases. A similar rigorous analysis has been reported

by Neviere et al. [10], but their approach requires a

numerical integration which may introduce certain in-

herent disadvantages. Although computer calculations

may still be necessary to achieve highly accurate results

with the method presented here, their precision can be

easily and systematically obtained to any desired order.

Furthermore, the solution is already in such a form that it

lends itself readily to physical interpretations in terms of

the effects due to the individual partial (space-harmonic)

fields.

For surface waves and leaky waves support ed by dielec-

tric gratings, the two aspects of greatest interest are their

dispersion curves and the amplitudes of their space

harmonics. The dispersion curves dictate the proper con-

ditions that must be satisfied for effective operation of

any optical device employing periodic thin-film wave-

guides. The space-harmonic amplitudes determine whether

the desired interaction is efficient or not. The derivation

and calculation of both the dispersion curves and the
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space-harmonic amplitudes are therefore presented here in

detail, andseveral numerical examples aregivento illus-

trate their variation with respect to, the physical param-

eters of the periodic configurations. In particular, the

role of the grating thickness is discussed and it is shown

that the leakage of energy away from the structure is

subject to a saturation effect which could not be evaluated

by the approximate methods reported in the past.

II. CHARACTERISTIC FIELDS IN THE UNIFORM

REGIONS AND THEIR PROPERTIES

The class of periodic thin-film structures considered here

is depicted in Fig. 1, which shows structures consisting of

one nonuniform (periodic) region and three uniform planar

regions. The nonuniform region can be regarded as a planar

layer of constant thickness to,whose composition varies

periodically along x, with period d. The three uniform

regions include a thin film of thickness tf, an upper (air)

half space, and a lower (substrate) region. In most prac-

tical cases, the substrate thickness is very much larger

than the wavelength k, so that the lower region may also

be assumed to be a half space. However, the specific

four-regions character of the structures shown in F~g. 1 is

chosen here only because of its wide application and the

results are generalized later to an arbitrary number of
layers. If desired, the finite thickness of the substrate may

then also be accounted for.

The fields supported by the structures in Fig. 1 are

different in each of the four regions. To find a solution of

the electromagnetic problem, it is therefore necessary

to consider the type of (characteristic) waves that may

appear in every separate region. The solution is then con-

structed by choosing a suitable combination of these waves

so as to satisfy the boundary conditions. We shall therefore

discuss here the type of fields that occur in the uniform

regions, after which the fields in the periodic (grating)

region will be examined in Section III. The boundary con-

ditions and the derivation of the field solution is then

given in Section IV, with discussions and numerical

examples being presented in subsequent sections.

Because the widths (along y) of all the layers are large

with respect to the wavelength h, the fields are assumed

to be invariant with respect to the y coordinate, i.e.,

~/@ = O. For simplicity, we also assume that all of the

media involved possess the permeability po of air (vacuum)

and a time dependence exp ( —id) is suppressed. If the
periodic layer is absent, the field components of character-

istic waves in the uniform layers appear in the form

Fj(z,z) = FOt~)exp [i(kxz + k.(~)z) ] (1)

where Fo(~J k a constant and

1GZ2+ [i%i~j~]t = ki2 = koz~i. (2)

Here k.= 2~/~ is the plane-wave propagation factor in

air (vacuum) and the index j refers to the jth mediumj

with j = a (air), f (film), or s (substrate). The quantity

~j is the relative permittivity of the jth medium. In the
absence of absorption and scattering losses, uniform

layered structures can support surface waves that propa-

gate without attenuation along x and decay away from the

z

-d ---d

-x

(

Fig. 1. Varieties of thin-fdm dielectric gratings. (a) Medium with
periodic modulation o! its permittivity. (b) Layer with rectangular
corrugations. (c) Grating mth curved profile.

structure in the air and substrate regions. These waves

are therefore characterized by real values of ii = p,~ and

imaginary values of k~ttl for j = a and j = s.

When a grating is superimposed on the uniform layered

structure, the surface-wave field is modified to satisfy the

periodic boundary conditions on the grating. Under those

conditions, the field in all of the uniform regions (i.e.,

everywhere except within the grating layer) must appear

in the Floquet form

where the amplitudes F.(i) of each partial field in the

above summation can be found by satisfying both the

boundary conditions at each interface and the periodic

conditions imposed by the grating. The index n under the

summation sign is understood to run over all values of
n = 0,*1, *Z,... , this convention being followed through-

out this work unless otherwise stated. The quantities l<z~

are related to the fundamental longitudinal factor lc.o by

the Floquet condition ‘

L. = i% + 2n~/d, (n = 0,+1,+2,...). (4)

Because Fi(~7Z) must satisfy the Helmholtz equation

V2Fj + ki2Fi = O (.5)

each partial wave now obeys the dispersion relation (2),

which yields
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where the sign in (6) is chosen so that, for real values of

k,o, kZfl@ is either positive real or positive imaginary. For

complex values of k~o, however, the choice of sign is given

by (10), as discussed later.

We observe that each nth partial field in (3) may be

regarded as a mode with transverse variation exp (iksnz)

along x, which propagates along z with a propagation

factor lcznt~).Hence, within a finite-thickness layer (such as

that of thickness tf in Fig. 1), both signs in (6) must be

accounted for because they refer to waves that travel

along the +Z or the —z directions. In such a case, each

nth term in (3) includes two separate components, one

each for the +Z and —z directions. In the open (air and

substrate) regions, on the other hand, it is necessary to

retain only that component whose energy flow or decay

is away from the structure.

If the grating layer is sufficiently thin, the fundtiental

propagation factor ,kZois very closely given by the propa-

gation factor ~,. of the surface wave on the uniform lay-

ered structure (with no grating). Also, the fields of the

fundamental (n = O) partial wave are evanescent with

respect to z in the air and substrate regions. However,

even a very thin grating requires the presence of all kzn to

satisfy the appropriate boundary conditions; for such a

thin grating, all higher (n # O) coefficients F.(j) generally

possess very small magnitudes. Nevertheless, some of

these higher order partial waves may modify the nature

of the guided waves. This is seen from (6) where, if we

assume that lc~o= ~s~, we find that k*.(j)may be real for

j = a,.s if n is negative and the periodicity length d is

sufficiently small. In the air and substrate regions, a real

value for k=n(~1 implies that the nth field component

propagates along 2, in contrast to the fundamental

(((surface-wave”) component n = O which is evanescent

along z. The propagating nth component accounts for

energy that flows away from the structure, so that the

complete field given by (3) is then no longer a true surface

wave because now not all of the energy flows parallel to

the x direction.

The foregoing features may be clarified by considering

a surface wave incident from the left on a uniform struc-

ture, as shown in Fig. 2. For x >0, a grating is superposed

on the structure but we may first assume that this grating

Leaky-wove beam

z. In alr

Incident
Surface Wave

,j&
Grating

*X

\

~\\ 1Leaky - wave beam
in substrate

Fig. 2. Surface wave incident from a uniform region (x < O) onto
a region containing ‘a periodic perturbation (x > O). The per-
iochcity modifies the surface-wave field by leaking beams at
angles @.@ in the air and substrate regions ( j = a, s). For clarity,
only one such beam is shown in each regiom The arrows suggest
energy flux.

consists of very small periodic perturbations of the layer

that supports the surface wave. Hence, as the surface

wave enters into and progresses along the grating portion,

a very small amount of field scattering occurs at every

perturbation. Because this scattering is very weak, the

surface-wave field in the grating region is, on a local scale,

essentially quite similar to that in the nonperiodic (x < O)

portion. However, if the grating region is long, the energy

leaked by scattering adds up to a large portion of the

energy brought into the grating region by the incident

surface wave. Because of the regular placement of the

scatterers, the individually scattered fields interfere con-

structively only along certain preferred directions and the

leaked energy appears in the form of beams that radiate

at angles 13n(~), which are given by

tan e~cj) = k%./kZ,,c~j. (7)

Here On(~Jis a real angle only for real values of kzn(Jj, Along

these real a?@3S On(~), an energy flux appears in the form

of radiation in the air ( j = a) or in the substrate ( j = s)

regions.

The foregoing argument implies that, because energy

loss occurs (due to radiation, the complete guided field

must decay with .r as it progresses along the grating region.

Hence, the propagation factor kzo along the grating region

cannot remain purely real but, instead, ICzois changed from

the value ~~., of the surface wave to a complex value. We

therefore obtain

J%wn= & + k = (PO+ 2nr/d) + ia (8)

where the imaginary term a > 0 is responsible for the

decay due to radiation leakage. We note that (S) indicates

that the longitudinal decay factor a is the same for all of

the partial field components in (3), as required by the

Floquet condition (4). Evidently, (6) implies that kzn(~)

is then also complex, so that

lc.~(~) = &(~J + i~~(~). (9)

We now note that, unlike a, the transverse decay factor
~.(~) is generally different for every n. It is also important

to recognize that a is small in the case of thin gratings

(i.e., small periodic scatterers), but q. may be large or

small depending on n. Because lc,.f~j is complex? the square-

root sign in I(6) must be selected to satisf yl

Vn?O as i3. 20. (lo)

Because waves guided by periodic structures generally

contain radiating field components, these waves are no

longer true surface waves (with k.. = real). Instead, they

are referred to as leaky waves (with ICZOcomplex). Al-

though these leaky waves were described above in terms of

small periodic perturbations, it should be evident that

the foregoing argument also holds for large periodic

scatterers because the size of the perturbations affects the

leaky waves only quantitatively. Thus the leakage param-

eter a and the higher order (n # O) amplitudes F.(~) are

small only in the case of small perturbations; as the size

1 Thk choice requires an analytical continuation argument for
,kZn, as discussed in [25].
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of the scatterers increases, a and F~cij generally also in-

crease and the overall leakage effect becomes more pro-

nounced.

111. CHARACTERISTIC FIELDS IN THE

GRATING REGION

To find the fields supported by the entire thin-film

structure, it is necessary to examine the characteristic

waves in the periodic layer, which will be henceforth

referred to as the grating region. As two-dimensional

(~-invariant) fields can bedecomposed into TEand TM

modes, the Maxwell equations for the field vectors can be

reduced to the scalar equation

V2F0 + 1:2(x) F, = O (11)

where now iiz ( z) is no longer a constant as in (5). We

shall restrict the present discussion to gratings of the type

shown in Fig. 1(a) and (b), for which kz (z) is a function

of z only. The procedure for extending our results to the

more general case having also a z dependence, as is the

case in Fig. 1 (c), is discussed later in Section IIIC. The

electric and magnetic fields E and H, and the parameter

k(x) are then specified as follows.

TE modes:

E=yoF and H=– LVXE (12)
W/Jo

k’(z) = ){.’6($) . (13)

Ti?f modes:

H = y&12(x)F and E = J V X H ( 14)
we(x)

[13 e’(x) 2 e“(x)
— +— (15)~2(~) = ko%(x) – ~ ,(*)

2,(X) “

Here y. is a unit vector along y and E(x) denotes the rela-

tive permittivit y in the grating region, whose x-dependent

behavior is discussed further below in the context of

specific examples.

As indicated by (11) – ( 15), a key step in finding the

characteristic solution Fg = Fg (.z,z) in the grating region

requires the specification of k(z) via ●(x). Because e(z) is

periodic, k (z) can be generally represented by a Fourier

series such that

k2(x)’ = k.’ X p. exp (i2nmx/d) (16)
n

where the coefficients pm are known for a given grating.

We may then take

F, = ~ qn (z) exp (ik=mx) (17)
a

where lc~~was defined in (4). Inserting this representation
into (11 ), we obtain the system of differential equations

(18)

where q = q(z) is a column vector with elements q.(z)

and P = (P.z) is a constant matrix (independent of z)

whose elements are defined by

P.1 = ko2p._l — k.fi%.l. (19)

The system of differential equations (18) characterizes

the couplings between all of the space harmonics in the

grating region. As a result of this coupling, the variation

with respect to z of the waves is considerably more com-

plicated in the grating region than in any of the uniform

layers. To solve the coupled system of differential equa-

tions with constant coefficients, we may assume a solution

of the form

g = c exp (iKz) (20)

where K is a propagation constant along z in the grating

region, and c is a constant vector (independent of z).

Substituting (20) into (18), we obtain system of linear

homogeneous equations

Pc = K2C (21)

which states that K2 is an eigenvalue of the matrix P. We

therefore obtain the characteristic equation

det [P – K21] = O (22)

where 1 is a unit matrix of infinite order. Let Km’ be an

eigenvalue determined from (22); the corresponding

eigenvector cm (with elements c~n) can then be obtained

by solving the system of linear homogeneous equations

(21). From (20), we thus have a pair of eigensolutions

(+)
q~ (z) = cm exp (iK#)

(23a)

q~(–) (Z) = Cm eXp ( ‘~KwZ). (23b)

The sign of K. is chosen according to (9) and (10). Thus

the + and – signs in q~ti) (z) represent waves that

travel along the positive and negative directions of the

z axis, respectively.

An inspection of the matrix P reveals that the deter-

minant in (22) is of the Hill type, so that the eigenvalues

Km2may be evaluated by a judicious truncation of the

determinant. By extending to the present case a theorem

on infinite determinants [15], we find that such a trunca-

tion is valid provided

(l/ko’) / ko’po – k..’ – K’] > ~’ I p, I (24)
i

which must hold for I n I > N, where ATis a finite positive

integer and the prime in the summation indicates that the
term i = n is excluded. 13ecause the left-hand side in (24)

is proportional to nz for large \ n I and the right-hand side

is independent of n, the above sufficient condition is satis-

fied if the Fourier series in (16) converges absolutely. If

thk condition is not satisfied, other mathematical tech-

niques for determining the characteristic solutions in the

grating region have to be employed. For example, for

gratings of the types shown in Fig. 1 (b) and (c), we may

resort to the solution of a boundary-value problem for an

individual cell of length d, as referred to in Section IIIB.

We recall that the vector cm contains elements c~~, so

that every complete (modal) mth solution F, in the

grating region contains an infinite set of space harmonics,

each of which has an amplitude c~~. This is in contrast to
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the fields Fi in the other (uniform) regions ( j # g)

wherein every nth mode contains a single space harmonic,

which forms by itself an independent solution of the per-

tinent wave equation. After determining the values of Km

from (22), all of the coefficients c~~ can also be found by

using (21 ) which specifies these coeiiicients as ratios with

respect to one of them, say c~~. The value of c~n can itself

be prescribed by a normalization condition, which may

be chosen to be c~~ = 1 for the present class of problems.

However, it is important to recognize that all ~ and c~~

can be found and maybe assumed known if ~( z) is specified

in”(ll)–(15).

To illustrate the foregoing concepts, we shall consider

the specific grating structures shovvn in Fig. 1, which are

of current practical interest.

A. Sinusoidally Modulated it~edium

For the periodic layer of holographic type, which appears

in the structure of Fig. 1 (a), a canonic description of its

medium is given by

(25)

where C9is the average relative permittivit y and M is the

modulation index.

The propagation Qf TE waves in such a medium has been

extensively invcstiga,ted by ‘Tamir et al. [16]; in this case,

the Hill’s determinant yielding Km and the Fourier coeffi-

cients c~~ can be conveniently analyzed in terms of rapidly

convergent continued fractions. The results have then

been applied by Wang 117] to the solutions of T13 waves

guided by a slab of the nlodulatcd medium in a uniform

and symmetric environment.

For TM waves, on the other hand, the Hill’s determinant

has been analyzed by Yeh et al. [18], but the harmonic

amplitudes c~~ have not been studied. Recently, a new

formulation for this TM-wave problem has been presented

by Peng and IIessel [19]. This new method of analysis is

particularly useful for analytically determining the space-

harmonic amplitudes cnn of the electromagnetic fields.

Thus the boundary value problem for this class of dielec-

tric waveguides can now be rigorously treated for TM

waves, in a manner analogous to that of TE waves.

B. Rectangularly Jfodulatecl Medim

The variation of the medium that forms the grating in

Fig. 1 (b) can be described by a rectangular modulation,

which is given by

e(z) = q + (q — q) ~ [V(X — lC1) — U(Z — kz — Cll)]

(26)

where U (Z) is the unit step function of argument &. In

current practice, El = e. ~nd EZ = ef, but we shall here let

both c1 and C, be arbitrary so as to cover a larger class of

applications,
If the thickness t,of the grating region is made infinitely

large, we obtain a periodic array of dielectric slabs, whose

characteristic waves have been examined by Lewis and

Hessel for TM modes [20]. In this case, both the dispersion

relation for c~btaining Km and the harmonic amplitudes c~n

can be found. in terms of closed-form solutions. Hence the

solution of the set of equations (21) and their associated

Hill’s determinant (22) can be dispensed with and the

closed .forrns derived by Lewis and Hessel may be used

instead.

Although ‘TE modes have not been explicitly examined

by Lewis and Hessel, their analysis is analogous to that of

T.M modes. Thus, for structures with rectangular corruga-

tions of the type shown in Fig. 1 (b), the characteristic

waves that appear in the grating region are known, as was

also the case for structures with a sinusoidally modulated

layer.

C. Curved-Profile Gratings

Because the foregoing two grating profiles possess func-

tions e(x) that are invariant with z, they lend themselves

directly to a rigorous solution of the boundary-value

problem. In contrast, the curved profile of Fig. 1 (c) is

generally not separable with respect to the z and z coordi-

nates and has been solved, so far, only by employing

numerical integrations [10]. Nevertheless, the approach

described here can be generalized to also solve curved

profiles by using judicious approximations of these profiles.

To illustrate this generalization, consider the grating

with slanted boundaries in Fig. 3(a). By partitioning the

grating into fine layers and approximating each of these

by rectangular profiles, we obtain a configuration as

indicated in Fig. 3 (b). .41though now we have more than

a single pericldic layer, each one of them has a rectangular

shape like that in Fig. 1(b) and, furthermore, all of the

layers have the same periodicity d. The analysis of the

multiply layered grating then follows as a straightforward

extension of that for the single grating, as discussed in

Section VB. i$lthough this extension is only an approxima-

tion for the original slanted grating, this approximation

can be made as accurate as desired by subdividing the

grating into sufficiently many fine layers.

A much simpler, but probably less accurate, procedure

for treating a curved-profile grating is to average (for

MORE COMPLICATED GRATINGS

(a)

(b)

Fig. 3. Appro ~imation of a curved profile by periodic layers with
rectangular shapes. (a) Actual profile. (b) Approximated profile.
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every x) the permittivity over z inside the grating layer.

Thus, iftheprofile ofthe periodic boundary that separates

thetwomedia with permittivities c~andc, in Figs. l(c)

or 3(a) is described by the function

z = h(z) = h(z+ci), forO~z~t, (27)

the averaged permittivity becomes

h(x)
e(z) = C2+ (q — 61) —

t, “
(28)

The problem is then reduced to that of a layer with uni-

form thickness but with varying e(x), as was the case of

the modulated medium in Section IIIC above, except that

c(z) in (28) may cent ain many sinusoidal terms. hTever-

theless, this problem lends itself to the same treatment

involving Hill’s functions as the TM modes discussed by

Yeh et al. [18] and Peng et al. [19].

IV. FIELD SOLUTION FOR PERIODIC LAYERS

After specifying the fields within the separate layers of a

dielectric grating structure, we may now consider the

boundary-value problem. For this purpose, we simplify

the problem by considering first a single periodic layer

adj scent to two half spaces, as shown in Fig. 4. In this

case, a single periodic layer of thickness to is left. The

presence of one (or more) uniform layers is then accounted

for in Section Y by straightforward modifications of the

formal rigorous solution of the electromagnetic problem

posed by Fig. 4.

Within the periodic (grating) layer, (17) and (23)

imply that the electric and magnetic field components

transverse to z are, respectively, given by

E, = ~ [g~(+) eXp (~Km2)

m

+-gm(-l exp ( –iK~2) ] s Vn. exp (ikz.z) (29)
7?

Ha = ~ [gin(+) E!Xp (~KmZ)

m

— gin(-) exp ( —iKmz) ] ~ ~m~ exp (d&z). (30)
n

The above is a modal representation that regards the

fields in terms of modes that propagate in the e direction,

each mth term in the first summation being an independent

mode with amplitudes g~(+) that are to be determined.

Because E, and Ho are normal to the propagation (2)
direction, they correspond to either F,, discussed in See.

tion III, or to its partial z derivative, depending on which

of the specific TE or TM modes are considered.

For any given e(z) and for an assumed value of kzo, all

of the quantities Km are known in accordance with the dis-

cussion in Section III. Here V %. and In. refer to voltage

and current amplitudes of space harmonics, respectively,
one set of which is identical to the set of coefficients c~~

forming the vector cm discussed in Section III; thus, for

TE modes we have cnn = V~n, whereas for TM modes

c~~ = Inn. The other set is related to the first set via

lMaxwell’s equations, which yield

Vmn = ~ zm,._r(’)Imr (31)
T

w

-x
es

s+ $1

Incident
Wave

Fig. 4. Canonic configuration containing a single periodic layer of
thickness t..

where Z~,n_P (g) is an impedance that represents the

coupling of the rth harmonic of the magnetic field to the

nth harmonic of the electric field. The value of Zw ,n_, f@Jis

determined by the specific relationship that relates E, and

H. for each mode via Maxwell’s equations (12) and ( 14).

For example, in the case of a sinusoidally modulated layer

of the type discussed in Section IHA, we get

1[wo/hm@]&v, for TE modes

zm,.-,(~) = (32)

[k*m(9)/&leoeg][&, + M(l$n-,,, + 6.+1,.) ],

for Thl modes

where 8., is Kronneclier’s delta function. For convenience,

we assume now that vie wish to solve the fields due to a

plane wave incident at an angle o from the substrate

region, as shown in Fig. 4. In this case, kZO= k, sin o refers

to the wavenumber along x dictated by the incident wave

and, in view of (3) in Section II, the fields in the substrate

are given by

E. = exp (ik=Ox + &ZO(sJz) + ~ s. eyp (ik_r – ikZn@)z)
n

(33)

H, = YO@) exp (ikzO.r + ik,O(sJz)

– ~ .S.YJS) exp (ik..z – ikZ.(’)z) (34)
n

where it is assumed that the incident wave amplitude i?
unity and the amplitudes s. of the scattered waves have

to be determined. The fields in the air region are given by

Ha = ~ atiYn@) exp (z%m.x + iksm(a)a) (36)
n

where k,n and k.n(f) ivere defined in (4) and (6), Yn(~J is

now the characteristic modal admittance

Ikzn(’)/wPo, for TE modes
yn(i) = (j #g) (37)

clX@j/kzn(J), for TM modes

and the amplitudes a. are to be determined together with
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s. and g~(~) by matching the boundary conditions, which If required, the scattered amplitudes cznin the air can be

require that the appropriate components in (29), (30), similarly obtained via (40) or (41), together ~vith (42)

and (33) –(36) be continuous at z = O and tg.This leads and (44). This would complete the determination of all the

to the following systems of equations:
.,

scattered amphtudes a~, g~ (*J, and s..

80. + s. = z Vm.[gm(+) + $%(+] (38) V, THE FIELDS GUIDED BY DIELECTRIC
m

GRATIhTGS

Y.(’) (alln – s.) = x Imn[gm(+) – gin(-)] (39) As discussed in the introduction, the fields of greatest
m

interest are those that can be supported by periodic thin-
~ Vm.[exp (iK&) g~ (+) + exp ( – iKmfQ) g~(–) ] film structures in the absence of any wave incident from
??? the air or the substrate. These fields are those of the sur-

—— exp (dtz.(~)tg) an (40) face and leaky waves described in Section II, which reprc-

~ Inn[exp (?kt,) g~ ‘+) – WP ( – Z’Km~g) gin(-)]

m

—— exp (dczn(a)to) Yn(=)an (41)

for all n = 0,+1,+2,’””. These are the four coupled

systems of linear equations that determine the four sets of

unknown scattered harmomc amphtudes a ~, s~, gfi (+), and

g.(–), as follows.

Multiplying (40) by Yti(a) and then subtracting the

resulting equation from (41 ), we obtain, in matrix nota-

tion,

g(–) = exp (iK,J,)R9 exp ( iKJg) g(+) (42)

where gt*) are column matrices with elements g~(+),

exp (iKJo) is a diagonal matrix with elements ~~~exp (’iK~t~)

and R. is the reflection coefficient matrix looking into the

air region at z = to,as given by

R, = (Z+ Y. V)-’(Z– YaV) (43)

with Z and V being square matrices with elements (Z) ~m =

I and (V) ~fi = V~~, respectively, and y. being a

d~gonal matrix with elements Y~(a)&~.

Nextj we multiply (38) by l’~@), add the result to (39)

and invoke (42) to obtain

Sgg(+) = Toe (44)

with

S, = 1 – RO exp (iK,t,) R, exp (iKJ,) (45)

To = 2(Z+ Y~V)-’Y. (46a)

R. = (Z+ Y~V)-l(Z– Y, V). (46b)

Here e is a column vector with elements 80~, Y, is a

diagonal matrix with elements Y. (S)&~, while TO and RO
are, respectively, transmission and reflection matrices

looking down into the substrate at z = O.

When the matrix S0 in (44) is singular, the fields are in

resonance as discussed in Section V. For nonresonant

fields, the inverse of S, exists and g(+) is then uniquely

determined via (44) for plane-wave incidence. Using (42)

and (44), we then obtain from (3s) that the sczittered field

amplitudes S. in the substrate are given by the column

vector

s = l?oe (47a)

where RO is a reflection matrix looking up at z = O, as
given by

R. = To-’[exp (iKJ,) R, exp (iKJ,) – RO]S,-’ To. (4i’b)

sent free-resom%nt solutions of the boundary-value problem

under consideration. We shall discuss these solutions first

for the canonic structure shown in Fig. 4, after which we

shall generalize the result to structures with an arbitrary

number of layers in addition to the single periodic layer of

Fig. 4.

A. Guiding by a Single Periodic Layer

In the absence of a wave incident from an exterior

region, wc have a null vector instead of e in (44), which is

then satisfied only if the det errninant of S~ vanishes,

namely,

det (S,) = clet [1 – RO exp (iKOt,) R, exp (iKJ,) ] = O.

(48)

This represents the dispersion relation for the guided

(surface or leaky) waves of the grating in Fig. 4. This

relation yielcls the unknown eigenvalues lcoo.For any such

ICA, we can then find all g,,(+) in terms of one of them by

replacing e by O in (44). All of the other amplitudes an,

gi(-), and s. can thereafter be determined as discussed at

the end of the preceding section.

Because t-he foregoing analysis regards the fields as

propagating along the z direction, which is normal to the

boundaries, the result of (48) represents the transverse

resonance condition for the present configuration. To

understand the physical significance of this condition, let

us consider the special case when the periodic layer in

Fig. 4 is replaced by a uniform slab (with no periodic

variation). I-n this case, (48) reduces to

1 – ?h~g t?~p (2iKfo) = t) (49)

where ro and T* are reflection coefficients looking into the

substrate and air regions, respectivdy, at ~ = O and tg.

Equation (49) states the familiar (resonant, surface-wave)

condition that the wave remains unchanged after a round-

trip travel across the layer, the trip including one reflection

at each of the two boundaries [21]. Thus (48) for the

grating layer is a generalization of (49) for the uniform

layer. The tranfiition from scalars in (49) to matricw in

(48) represents the fact that the presence.of pmiodicity

introduces energy coupling from the fundanwnt al (n = 0)

field to its higher order (n # 0) space harnlonics.

In the ease of a uniform layer, (49) is a transcendental

equation, which may be solved graphically or numerically

to find the propagation factor along the structure. For a

periodic layer, (48) is considerably more complicated
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\ because it involves an infinite determinant which must be

“tmuncated to solve for the unknown propagation factor

k~~. ‘This determinant is also of the Hill’s type, as was the

case in (22), sothatits truncation can recarried out very

accurately by numerical computer techniques, as dis-

cussed further in Section VI.

B. Guiding bylWultilayered Periodic Structures

The results discussed in the preceding section ma~’. now

be extended to structures that possess several layers which

are additional to the single nonuniform (periodic) layer

discussed above. For this purpose, we first recognize that

the electromagnetic problem of the single periodic layer

may be rigorously described by the equivalent transverse

network shown in Fig. 5(a). In this network, each of the

semi-infinite transmission line in the air or substrate

regions represents one of the niodes; the characteristic

admittance Y.(~) and propagation factor k ~~‘$) have been

defined in (37) and (6), respectively. All of these trans-

mission lines are connected to the grating region, which is

now represented schematically by the box mailied B in

Fig. .5(a).

If desired, the network describing the scattering proper-

ties of the box marked B can be synthesized along the

lines discussed in [22] for the case of an interface to a

sinusoidally modulated medium. However, this synthesis

is not necessary for the purposes of the present work be-

cause we may regard the box marked B in Fig. 5(a) to be

defined by (47) for S,. We note, on the other hand, that

the matrix So describes the coupling of all of the modes to

each other via the periodic properties of the grating region.

To generalize the result to additional uniform layers,

consider now the structures described in Fig. 1 (a) and

1 (b). These configurations can be represented by the

equivalent network of Fig. 5(b), which is obtained by

simply interposing an appropriate set of transmission lines

of lengths tf between the grating and substrate regions.

In this case, we may look down at the plane z = – t ~ and

define a reflection coefhcient

yn(f) — yn(.)

‘n = yn(f) + yn(s) “
(50)

J3y utilizing pn, we obtain that the input admittance

Yn[~@ at z = O in every transmission line is given by

We can use now (45) for RO and replace Y. (SI therein

with Y. ( ‘“) to get the modified reflection matrix RO{ for

the (two-layer) configurations of Fig. 1 in the form

RO’ = (Z+ Y,. V)-l(Z – Y;. V) (52)

where Y,. is a diagonal admittance matrix with elements
yn(in)~mn. By next taking RO’ instead of RO in (48), the

transverse resonance condition is extended to the geome-

tries of Fig. 1, which possess the additional uniform layer

of thickness tf.

(a)

B Grating

—-—————

[[/[1[
4!; +;)

~;, --- .7=0

Film

kfl 1#
(f)

k,,
—— -—... --- *=-tf

($)
Y. I Y!)

(s)
y

(s) (s) (s) Substrate
kzrl kzo kz,

(b)

Fig. .5. Equivalent transverse . networks for the analysis of
dielectric-grating structures. (a) Network for the single-layer con-
figurations of Fig. 3. (b) Network for the structures shown in
Fig. 1.

The, above procedure can, of course, be generalized to

any number of layers that ar~ added below the film layer.

As suggested by Fig. 5, all that is needed is to modify

RO’ so as to take into account the additional layers. AS

such a modified expression for RO’ involves the input

admittances Y. (i”) looking into a stack consisting of an

arbitrary number of uniform layers, the extension is

straightforward. The same procedure can be utilized if

additional uniform layers are placed above (rather than

below) the grating region. In this case, the reflection

matrix R~ must be modified to a matrix Ru’ in a manner

analogous to that discussed above for RO’. of course,

uniform layers may be accommodated both below and on

top of the grating layer by employing the appropriate

modified expressions Ro’ and R~’ at the respective bound-

aries of the grating region.
Finallyj additional periodic (rather than uniform) layers

can also be accommodated in order to treat structures

discussed in Section IIIC. This extension is somewhat

more complicated because now we connect additional boxes

of the form marked B in l’ig. 5 rather than just transmis-

sion line sections. In matrix notation, this extension is

nevertheless conceptually straightforward and the result-

ing expressions are relatively simple, if all the periodic

layers possess. the same periodicity cl, as prescribed in

Section IIIC. .4s such an extension is beyond the scope of

this paper, the interested reader should consult reference

[23] for further details.
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VI. DERIVATION OF NUMERICAL RESULTS

The application of the techniques described above in-

volves the solution of the secular equation, which in this

case is given by the vanishing of the infinite determinant

of So in (45). We recall that all of the parameters entering
into SQare-assumed known, except fork.. which is regarded

as the unknown variable for any given frequent y w. In

general, however, the quantities Km and c~~ (in the grating

region) are not known explicitly, so that the determina-

tion of their values is part of the computation process for

finding kz~.

A first step in the programming of a computer routine

for solving the transverse resonance (secular) relation is

to provide a subroutine for the calculation of Kmand c~m

for any given combination of ko and kso. As discussed in

Section III, such a subroutine is generally dependent on

the specific grating structure, but it usually involves the

calculation of a suitably truncated determinant of the

infinite matrix defined in (22). After “finding the eigen-

values Km of this truncated matrix, the pertinent Fourier

coefficients cfi~ can be determined from their defining rela-

tion (21 ). of course, the accuracy of all Km and Crnfi is

dependent on the order of the truncated determinant. In

general, this accuracy increases with the order; as the

determinant is of the Hill’s type, the truncation needs not

be unduly large for the accuracies required by practical

considerations. However, great care must be exercised

when choosihg the rows and columns of the truncated

determinant because an improper choice may considerably

degrade the ultimate accuracy that is obtained. This is

particularly true for calculations involving waves at or

near a Bragg condition in the grating region, i.e., for

values of Bod = NT(N = +1,+2,*3,.””). A discussion

on this question for the specific case of a sinusoidally

modulated medium is given in [22, appendix]; it is

expected that the considerations presented there apply

also to a more general variation of periodic variations.

The subroutine for determining all required Km and c~n

is then introduced into the program that handles the

calculation of k~o. As was the case for the subroutine, the

program for finding kmoalso involves the calculation of a

suitably truncated determinant of an infinite matrix SO,

which is again of the Hill’s type. Hence the considerations

for truncating S, are similar to those for the subroutine

mentioned above. However, when solving for kzo by using

(48) for the truncated determinant, the computer calcula-

tion (usually involving Newton’s iteration method) may

converge very slowly This happens especially with con-

figurations of the type shown in Fig. 1 for which the wave-

guiding process is primarily determined by the uniform

layer rather than by the grating layer. In such cases, the

calculation of k.o is more easily and more accurately per-
formed by utilizing another matrix Sf instead of S,.

This is obtained by noting from Fig. 5(b) that at z = O

in the uniform layer, the field amplitudes .f~(+) are related

by

f(-) = fief(+) (53)

131

r-- 1

“ r $od— Zlr

Fig. 6. Variation of p~ for the fundamental TE and TM modes
along a modulated layer as shown in Fig. 4 with ~a = 1, CO= 3.61,

G = 2.25, M < 0.5, and t = 2d/~. The insert shows the first
stopband for M = 0.08.

where j(+) are column vectors with’ elements ~. C*) and &o

is given by j~o in (47b) with the subscript s replaced by f
in (46). On the other hand, at z = —tf, the same ampli-

tudes satisfy

~.f+) = pnfn(-) exp (i%i.n(f)tf) (54)

where p. is given in (.50). Inserting (54) into (53), we find

Sfj(-+) = [1 – exp (i2 kftf) Rjio].f(+) = O (55)

where Sf is defined by the matrix in the square brackets,

exp (i2 kftf ) and Rf are diagonal matrices with elements

&n exp (i2kzm(~jtf) and ti~npm, respectively. Here det ( Sf) =

O expresses the transverse-resonance condition inside

the film layer in a manner analogous to that whereby

det (S,) = () expresses this condition inside the grating

layer.

By thus choosing a suitably truncated matrix Sf or S~,

the computer program first finds kzo by solving (48) or

(55), after which the amplitudes an and S%can be found

by solving the simultaneous set of equations (3S) -(41).

The values of kto = @o+ ia, together with the magnitudes

of all am and sn, usually complete the information needed

for the design of a particular dielectric grating structure.

To illustrate some of the results that can be obtained

by the techniques discussed above, we present below

several calculated curves for gratings of the type shown in

Figs. l(b) and 4.

The Brillcluin diagram for “a modulated layer is given

in Fig. 6 fc,r the lowest (fundamental) TEO and TIW

modes. As predicted %y the argument given in connection

with Fig. 2, these dispersion curves show that the wave-
number g?. is very closely equal to the value O.~ of the

surface wave along a uniform (M = O) layer. In fact, for

values of M ~ 0..5, it is not possible to distinguish @ofrom

@,Won the scale of Fig. 6. In agreement with the theory

of surface waves along uniform layers [21], the dispersion

curves ‘in Fig. 6 lie between the straight lines OB and OC
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Fig. 7. Variation of the attenuation parameter a with frequency
for the same grating as that in Fig. 6. The range shown allows
foreither asingle beam in~he substrate (e.g., point Q~n Fig.6)
or.fortwp beams, one each m the substrate and alr regons (e.g.,
point R m Iihg. 6). Inside the stopband, a becomes very large
and reaches a peak which iswelloutside thevertical range shown.

through the origin, whose slope is given by cot–l (C+12)

andcot–l (c*[lZ), respectively.

The presence of periodicity manifests itself most strongly

by causing stopbands at frequencies for which a Bragg

condition pod = NT (N = &1, *2,.s” ) is satisfied. Such

a stopband region is illustrated in Fig. 6 by insert A,

which shows both pod and ad around pod = T in magnified

form. For wavelengths A inside this stopband, the field

of the surface wave is in the form of a decaying standing-

wave with respect to the x direction.

Besides producing stopbands, the presence of periodicity

may also change the surface waves into leaky waves, as

discussed in Section II. To assess this, we reflect the lines

OB and OC about ~Od = T to obtain FG and HG. By taking

into account the slopes of the various lines in conjunction

with (6), we may verify that, for j = a and s, all kznt~) are

pure imaginary inside the triangular region OLG. However,

lCZ(SJis real outside this triangle, whereas both kz,_l@J and

k~,_I@J are real outside the larger triangular region OLG.

Thus at frequencies for which the operation point is inside

the smaller triangle 07.G (e.g., point P), the surface wave
remains bound even ii’ periodicity is present. As frequency

increases and the operation point crosses the line FG (e.g.,

point Q), a radiation beam occurs in the substrate and the

surface wave is changed to a leaky wave. For frequencies

that are high enough so that the operating point is above

the DG line (e.g., point R), radiation beams occur in both

substrate and air regions.

The attenuation parameter a, which is due either to a

stopband or to power leakage, is shown in Fig. 7. As fre-

quency varies, a starts by being zero in the surface-wave

region; however, a is nonzero and peaks strongly in the

stopband region. This stopband behavior is of importance

in the operation of distributed-feedback lasers and the

maximum value of a determines the length required for

1 I

t
la”

I

,..3 / il , ,
25 30 40 50

d/A———

Fig. 8. Variation of the space-harmonic amplitudes a. with fre-
quency for the TED made along a rectangular grating.

effective lasing conditions. Outside the stopband. a is

nonzero if the frequency is high enough to produce radia-

tion, i.e., the wave is leaky. As seen in Fig. 7, a varies

slowly with frequency in the leaky-wave region, except in

the vicinity of certain critical values of d/L These critical

values of d/h are associated with the presence of Wood’s

anomalies along gratings [24]; in the present case, these

correspond to the onset of additional leaky-wave beams

in the air or substrate regions. However, for TM modes,

additional nulls may appear for a, which are due to a

Brewster-angle phenomenon for a higher (n #O) harmonic

inside the grating layer. Such a case is shown by the null

in a for TMO at about d/k = 0.43.

For both surface-wave and leaky-wave applications,

the amplitudes an are of great interest because their

magnitudes determine the eillciency of devices that employ

waves guided by periodic structures. We therefore show

in Fig. 8 the variation of a–z, a–l, and al (with ao = 1) for

the fundamental TEO mode along a rectangular grating of

the type shown in Fig, 1 (b). We recall that an denotes the

amplitude of the nth space harmonic at the air-grating

boundary z = t,.As the Brillouin diagram is basicall~

similar to that already given in Fig. 6, it is omitted here,
but its pertinent stopbind and leaky wave regions are

indicated in Fig. 8. It is noted that the curves for a.

undergo rapid variations close to the stopband edges. Also,

we note that I a_l I = ao = 1 and I a–a I = I al I within the

stopband, in agreement with the fact that the field is a

standing wave in the stopband.

Although some of the foregoing curves could have been

calculated by the approximate techniques reported in the

past [2]–[5], [7]–[9], [12], their accuracy should be
checked by a rigorous method such as that presented here.

To show the importance and the generality of the method

discussed in this paper, we show in Fig. 9 the variation of

a for the same grating as that of Fig. 8, except that now

the wavelength A is assumed fixed and the grating thickness
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Fig. 9. Variation of a with the grating thickness to for the same
grating as in Fig. 8. The solid curve shows the exact result whereas
the dashed line refers to a result obtained by a perturbation
anal ysis.

t~ varies. In this case, a perturbation analysis [5] would

yield the dashed curve, for which a increases continuously

with to.In contrast, our rigorous treatment yields the

solid curve, which indicates that a~ reaches a saturation

value close to 0.02 for values of to/A>0.2.

The behavior of the solid curve in Fig. 9 can easily be

explained by noting that the basic surface wave along a

uniform ( t~ = O) layer has an evanescent field in the air

region. When increasing t~ from zero, we perturb this sur-

face wave field by adding material on top of the uniform

film of thickness tf.At first, this material appears in a

region with strong fields and therefore the effect on a is

appreciable. However, as to increases further, the addi-

tional material appears in regions where the field has

gradually decayed until, at about t,/h= 0.2, any further

addition of material occurs in regions where the field is

exponentially small. Consequently, the effect of increasing

tgbeyond 0.21 is negligible and a approaches a constant.

The above is only one example of the serious discrepan-

cies that may occur between an exact result and that

obtained by approximate techniques. Although the method

presented here may be somewhat cumbersome to use, such

a method is essential if one wishes to verify the validity of

simpler but approximate results of unknown accuracy.
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