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Theory of Periodic Dielectric W aveguides

S. T. PENG, meMBER, 1EEE, THEODOR TAMIR, sENIOR MEMBER, IEEE, AND HENRY L. BERTONI, MEMBER, IEEE

Abstract~-The propagation of electromagnetic waves along open
periodic, dielectric waveguides is formulated here as a rigorous
and exact boundary-value problem. The characteristic field solu-
tions are shown to be of the surface-wave or leaky-wave type,
depending on the ratio of periodicity to wavelength (d/A). The
dispersion curves and the space-harmonic amplitudes of these
fields are examined for both TE and TM modes. Specific numerical
examples are given for the cases of holographic layers and for
rectangularly corrugated gratings; these show the detailed behavior
of the principal field components and the dependence of wave-
guiding and leakage characteristics on the physical parameters of
the periodic configuration.

1. INTRODUCTION

HIN-FILM structures containing a periodic variation
along the film have recently been of considerable
interest in integrated optics because of the important role
they play in applications such as beam-to-surface-wave
couplers, filters, distributed feedback amplifiers and lasers,
nonlinear generation of second harmonies, and beam reflec-
tion or steering devices of the Bragg type. The periodic
variation is usually obtained by means of a dielectric
grating, which is superimposed onto the upper surface of a
layered configuration. This dielectric grating is in the
form of a low-loss layer whose appearance falls into one of
two categories: 1) the layer possesses parallel planar
boundaries and its periodicity is produeced by a longitudinal
modulation of its refractive index (e.g., a bleached holo-
gram), or 2) the layer contains a homogeneous medium
but its upper boundary has a periodic variation (e.g., a
grooved profile obtained by etching). Both types of con-
struction of the dielectric layer are covered by the analysis
presented here. \

The operation of devices containing a dielectric grating
depends on the properties of the electromagnetic fields
guided by the structure. These fields appear either as sur-
face waves, which travel parallel to the structure, or as
leaky waves, which are guided by the structure but radiate
or leak energy continuously into the exterior regions. Both
types of waves appear as characteristic (free-resonant)
solutions of the boundary-value problem preseribed by the
thin-film configurations. Such problems have recently been
considered [1]-[14] in the context of several specific
structures, but most of the investigations have employed
approximations that are too restrictive for many practical
cases. The more common approximation has been the
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assumption that the grating periodicity acts as only a
small perturbation in a configuration that, in the absence
of the grating, appears as a planar multilayered medium
[2], [3], [5], [9], [11], [12]. This approximation yields
good results only if the periodic change is sufficiently
small, so that its use may produce erroncous results in
many practical cases, such as thick corrugated gratings
having groove depths comparable to the wavelength
[137], [14]. Another approximation has been the use of a
Rayleigh assumption which incorrectly neglects the
presence of incoming waves in the grating region [27, [4],
[8]. It has been shown [ [10] that this Rayleigh approxima-
tion may also result in serious errors if the periodic varia-
tion is not sufficiently small. It should also be pointed
out that most of the previous studies have developed their
analysis in the context of special cases, which usually
involved not more than three materials or layers; further-
more, some of these studies considered modes having one
polarization only (usually the TE type) rather than both
TE and TM polarizations.

The aim of this paper is to determine the wave-guiding
properties of a very important class of dielectric gratings
by utilizing a rigorous approach, which was briefly reported
on recently in the specific context of modulated layers [6]
and corrugated gratings [137], [14]. This approach does
not employ any of the approximations mentioned above
and it can be generalized to practically any planar dielec-
tric grating. The generalization is accomplished by first
considering both TE and TM modes in a canonic configura-
tion consisting of a periodic layer bounded by two dif-
ferent media; the analysis is thereafter extended to strue-
tures with an arbitrary number of layered media, of which
the grating configurations examined in the past represent
special cases. A similar rigorous analysis has been reported
by Neviere et al. [107], but their approach requires a
numerical integration which may introduce certain in-
herent disadvantages. Although computer calculations
may still be necessary to achieve highlv accurate results
with the method presented here, their precision can be
easily and systematically obtained to any desired order.
Furthermore, the solution is already in such a form that it
lends itself readily to physical interpretations in terms of
the effects due to the individual partial (space-harmonic)
fields.

For surface waves and leaky waves supported by dielec-
tric gratings, the two aspects of greatest interest are their
dispersion curves and the amplitudes of their space
harmonics. The dispersion curves dictate the proper con-
ditions that must be satisfied for effective operation of
any optical device employing periodic thin-film wave-
guides. The space-harmonic amplitudes determine whether
the desired interaction is efficient or not. The derivation
and calculation of both the dispersion curves and the
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space-harmonic amplitudes are therefore presented here in
detail, and several numerical examples are given to illus-
trate their variation with respect to the physical param-
eters of the periodic conﬁguratlons In partlcular, the

role of the grating thickness is discussed and it is shown
. that the leakage of energy away from the structure is
subject to a saturation effect which could not be evaluated
by the approximate methods reported in the past.

II. CHARACTERISTIC FIELDS IN THE UNIFORM
REGIONS AND THEIR PROPERTIES

The class of periodic thin-film structures considered here
is depicted in Fig. 1, which shows structures consisting of
one nonuniform (periodic) region and three uniform planar
regions. The nonuniform region can be regarded as a planar
layer of constant thickness ¢,, whose composition varies
periodically along z, with period d. The three uniform
regions include a thin film of thickness ¢, an upper (air)
half space, and a lower (substrate) region. In most prac-
tical cases, the substrate thickness is very much larger
than the wavelength A, so that the lower region may also
be assumed to be a half space. However, the specific
four-regions character of the structures shown in Fig. 1 is
chosen here only because of its wide application and the
results are generalized later to an arbitrary number of
layers. If desired, the finite thickness of the substrate may
then also be accounted for.

The fields supported by the structures in Fig. 1 are
different in each of the four regions. To find a solution of
the electromagnetic problem, it is therefore necessary
to consider the type of (characteristic) waves that may
appear in every separate region. The solution is then con-
structed by choosing a suitable combination of these waves
50 as to satisfy the boundary conditions. We shall therefore
discuss here the type of fields that occur in the uniform
regions, after which the fields in the periodic (grating)
region will be examined in Section III. The boundary con-
ditions and the derivation of the field solution is then
given in Section IV, with discussions and numerical
examples being presented in subsequent sections.

Because the widths (along y) of all the layers are large
with respect to the wavelength A, the fields are assumed
to be invariant with respect to the y coordinate, i.e.,
d/dy = 0. For simplicity, we also assume that all of the
media involved possess the permeability y, of air (vacuum)
and a time dependence exp (—iwt) is suppressed. If the
periodic layer is absent, the field components of character-
istic waves in the uniform layers appear in the form

Fi(x,2) = Fo@ exp [ilk.2 + k.D2)] (1)
where Fy9 is a constant and
k2 4 [k: 0P = k2 = ko (2)

Here k, = 27/) is the plane-wave propagation factor in
air (vacuum) and the index j refers to the jth medium,
with 7 = a (air), f (film), or s (substrate). The quantity
¢; 1s the relative permittivity of the jth medium. In the
absence of absorption and scattering losses, uniform
layered structures can support surface waves that propa-
gate without attenuation along z and decay away from the
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Fig. 1. Varieties of thin-film dielectric gratings. (a) Medium with
periodic modulation of its permittivity. (b) Layer with rectangular
corrugations. (¢) Grating with curved profile.

structure in the air and substrate regions. These waves
are therefore characterized by real values of k, = 8, and
imaginary values of £, forj = a and j = s.

When a grating is superimposed on the uniform layered:
structure, the surface-wave field is modified to satisfy the
periodic boundary conditions on the grating. Under those
conditions, the field in all of the uniform regions (i.e.,
everywhere except within the grating layer) must appear
in the Floquet form

F’,-(x,z) = Z F,0 exp I:'l(kxnx -+ kzn(j)z) :I) (.7 = g)

(3)

where the amplitudes F,9 of each partial field in the
above summation can be found by satisfying both the
boundary conditions at each interface and the periodic
conditions imposed by the grating. The index » under the
summation sign is understood to run over all values of
n = 0,+1,4+2, - -, this convention being followed through-
out this work unless otherwise stated. The quantities k.»
are related to the fundamental longitudinal factor k.o by
the Floquet condition

ko = keo + 2nw/d, (n=0,%£1,£2,---). (4)
Because F;(x,2) must satisfy the Helmholtz equation
V2F; + kEAF; = 0 (5)

each partial wave now obeys the dispersion relation (2),
which yields

b = o (ki — kgu2) V2 (6)
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where the sign in (6) is chosen so that, for real values of
kzoy k2n'? is either positive real or positive imaginary. For
complex values of k.o, however, the choice of sign is given
by (10), as discussed later.

We observe that each nth partial field in (3) may be
regarded as a mode with transverse variation exp (#kz.)
along @, which propagates along z with a propagation
factor k.. ”. Hence, within a finite-thickness layer (such ag
that of thickness ¢; in Fig. 1), both signs in (6) must be
accounted for because they refer to waves that travel
along the 4z or the —z directions. In such a case, each
nth term in (3) includes two separate components, one
each for the +2z and —z directions. In the open (air and
substrate) regions, on the other hand, it is necessary to
retain only that component whose energy flow or decay
is away from the structure.

If the grating layer is sufficiently thin, the fundamental
propagation factor k. is very closely given by the propa-
gation factor B,, of the surface wave on the uniform lay-
ered structure (with no grating). Also, the fields of the
fundamental (n = 0) partial wave are evanescent with
respect to z in the air and substrate regions. However,
even a very thin grating requires the presence of all k,, to
satisfy the appropriate boundary conditions; for such a
thin grating, all higher (n # 0) coefficients F,» generally
possess very small magnitudes. Nevertheless, some of
these higher order partial waves may modify the nature
of the guided waves. This is seen from (6) where, if we
assume that k.o = B, we find that k.. may be real for
j = a,s if » is negative and the periodicity length d is
sufficiently small. In the air and substrate regions, a real
value for k.. implies that the nth field component
propagates along z, in contrast to the fundamental
(“surface-wave’’) component n = 0 which is evanescent
along z. The propagating nth component accounts for
energy that flows away from the structure, so that the
complete field given by (3) is then no longer a true surface
wave because now not all of the energy flows parallel to
the z direction.

The foregoing features may be clarified by considering
a surface wave incident from the left on a uniform struc-
ture, as shown in Fig. 2. For z > 0, a grating is superposed
on the structure but we may first assume that this grating

Leaky-wave beam
n air

Incident
Surface Wave.

L.eaky - wave beam
in substrate

Fig. 2. Surface wave incident from a uniform region (z < 0) onto
a region containing a periodic perturbation (z > 0). The per-
iodicity modifies the surface-wave field by leaking beams at
angles 8, in the air and substrate regions (j = q, s). For clarity,
only one such beam is shown in each region. The arrows suggest
energy flux.
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consists of very small periodic perturbations of the layer
that supports the surface wave. Hence, as the surface
wave enters into and progresses along the grating portion,
a very small amount of field scattering occurs at every
perturbation. Because this scattering is very weak, the
surface-wave field in the grating region is, on a local scale,
essentially quite similar to that in the nonperiodic (z < 0)
portion. However, if the grating region is long, the energy
leaked by scattering adds up to a large portion of the
energy brought into the grating region by the incident
surface wave. Because of the regular placement of the
scatterers, the individually scattered fields interfere con-
structively only along certain preferred directions and the
leaked energy appears in the form of beams that radiate
at angles 6,7, which are given by

tan On(j) = kxn/kzn(j)- (7)

Here 6,7 is a real angle only for real values of k... Along
these real angles 6,7, an energy flux appears in the form
of radiation in the air (j = a) or in the substrate (j = s)
regions.

The foregoing argument implies that, because energy
loss occurs due to radiation, the complete guided field
must decay with r as it progresses along the grating region.
Hence, the propagation factor k.o along the grating region
cannot remain purely real but, instead, k., is changed from
the value ., of the surface wave to a complex value. We
therefore obtain

kean = Bu + ta = (B0 + 2nw/d) + tax (8)

where the imaginary term « > 0 is responsible for the
decay due to radiation leakage. We note that (8) indicates
that the longitudinal decay factor « is the same for all of
the partial field components in (3), as required by the
Floquet condition (4). Evidently, (6) implies that k.,
is then also complex, so that

ko = £, + g, (9)

We now note that, unlike «, the transverse decay factor
£, is generally different for every n. It is also important
to recognize that « is small in the case of thin gratings
(i.e., small periodic scatterers), but 5, may be large or
small depending on n. Because k., is complex, the square-
root sign in (6) must be selected to satisfy!

720 as B, 2 0. (10)

Because waves guided by periodic structures generally
contain radiating field components, these waves are no
longer true surface waves (with k.o = real). Instead, they
are referred to as leaky waves (with k; complex). Al-
though these leaky waves were described above in terms of
small periodic perturbations, it should be evident that
the foregoing argument also holds for large periodic
scatterers because the size of the perturbations affects the
leaky waves only quantitatively. Thus the leakage param-
eter o and the higher order (n = 0) amplitudes F, are
small only in the case of small perturbations; as the size

lThié choice requires an analytical continuation argument for
kzn, as discussed in [25].
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of the scatterers increases, @ and F, generally also in-
crease and the overall leakage effect becomes more pro-
nounced.

III. CHARACTERISTIC FIELDS IN THE
GRATING REGION

To find the fields supported by the entire thin-film
structure, it is necessary to examine the characteristic
waves in the periodic layer, which will be henceforth
referred to as the grating region. As two-dimensional
(y-invariant) fields can be decomposed into TE and TM
modes, the Maxwell equations for the field vectors can be
reduced to the scalar equation

V2F, 4+ 12(x)F, = 0 (11)

where now k2(z) is no longer a constant as in (5). We
shall restrict the present discussion to gratings of the type
shown in Fig. 1(a) and (b), for which k2(z) is a function
of z only. The procedure for extending our results to the
more general case having also a z dependence, as is the
case in Fig. 1(c), is discussed later in Section IIIC. The
electric and magnetic fields E and H, and the parameter
k(x) are then specified as follows.

TE modes:
E=y/F and H=—wioV><E (12)
E2(x) = ko2(x). (13)

TM modes:
H = y,é*(z)F and E = we:x) VX H (14)
B (x) = koe(x) — Z[%%T + % - (19

Here y, is a unit vector along y and e¢(z) denotes the rela-
tive permittivity in the grating region, whose z-dependent
behavior is discussed further below in the context of
specific examples.

As indicated by (11)~(15), a key step in finding the
characteristic solution ¥, = F,(z,2) in the grating region

requires the specification of k(z) via e(x). Because e(z) is

periodic, k(z) can be generally represented by a Fourier
series such that

k2 (2) = k2 Y pa exp (2na2/d) (16)
where the coefficients p, are known for a given grating.
We may then take

Fy =3 qu(2) exp (thent) (17)

where k.. was defined in (4). Inserting this representation

into (11), we obtain the system of differential equations
dZ

— 4= —Pq

7 (18)

where ¢ = ¢(z) is a column vector with elements g, (z)
and P = (P,;) is a constant matrix (independent of z)
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whose elements are defined by

Pnl = kozpn—l - kxnzanl- (19)

The system of differential equations (18) characterizes
the couplings between all of the space harmonics in the
grating region. As a result of this coupling, the variation
with respect to z of the waves is considerably more com-
plicated in the grating region than in any of the uniform
layers. To solve the coupled system of differential equa-
tions with constant coefficients, we may assume a solution
of the form

(20)

where « is a propagation constant along z in the grating
region, and ¢ is a constant vector (independent of z).
Substituting (20) into (18), we obtain system of linear
homogeneous equations

q = cexp (2x2)

Pc = &% (21)

which states that «2 is an eigenvalue of the matrix P. We
therefore obtain the characteristic equation

det[P— x21] =0

where 1 is a unit matrix of infinite order. Let «,2? be an
eigenvalue determined from (22); the corresponding
eigenvector ¢, (with elements c.,) can then be obtained
by solving the system of linear homogeneous equations
(21). From (20), we thus have a pair of eigensolutions

(22)

gn P (2) = cnexp (ikm2) (23a)
gn(2) = Cnexp (—tkn2). (23b)
The sign of «, is chosen according to (9) and (10). Thus
the 4+ and — signs in ¢.(¥ (2) represent waves that

travel along the positive and negative directions of the
z axis, respectively.

An inspection of the matrix P reveals that the deter-
minant in (22) is of the Hill type, so that the eigenvalues
ka! Mmay be evaluated by a judicious truncation of the
determinant. By extending to the present case a theorem
on infinite determinants [15], we find that such a trunca-
tion is valid provided

(1/k2) | kpo — er? — 2 > T | pi]  (28)
which must hold for [ n [ > N, where N is a finite positive
integer and the prime in the summation indicates that the
term 7 = n is excluded. Because the left-hand side in (24)
is proportional to n? for large | » | and the right-hand side
is independent of n, the above sufficient condition is satis-
fied if the Fourier series in (16) converges absolutely. If
this condition is not satisfied, other mathematical tech-
niques for determining the characteristic solutions in the
grating region have to be employed. For example, for
gratings of the types shown in Fig. 1(b) and (c), we may
resort to the solution of a boundary-value problem for an
individual cell of length d, as referred to in Section ITIB.

We recall that the vector c¢. contains elements cma, $0
that every complete (modal) mth solution F, in the
grating region contains an infinite set of space harmonics,
each of which has an amplitude ¢n.. This is in contrast to
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the fields F; in the other (uniform) regions (j # ¢)
wherein every nth mode contains a single space harmonic,
which forms by itself an independent solution of the per-
tinent wave equation. After determining the values of «,
from (22), all of the coefficients ¢, can also be found by
using (21) which specifies these coefficients as ratios with
respect, to one of them, say cn.. The value of ¢, can itself
be prescribed by a normalization condition, which may
be chosen t6 be ¢ms = 1 for the present class of problems.
However, it is important to recognize that all «, and cu,
can be found and may be assumed known if e(z) is specified
in (11)-(15).

To illustrate the foregoing concepts, we shall consider
the specific grating structures shown in Fig. 1, which are
of current practical interest.

A. Sinusoidally Modulated M edium

For the periodic layer of holographic type, which appears
in the structure of Fig. 1(a), a canonic deseription of its
medium is given by

N 27
e(2) = ¢ (1 -+ M cos 7 x) (25)

where ¢, is the average relative permittivity and M is the
modulation index.

The propagation of TE waves in such a medium has been
extensively investigated by Tamir et al. [167]; in this case,
the Hill’s determinant yielding ., and the Fourier coeffi-
clents c.» can be conveniently analyzed in terms of rapidly
convergent continued fractions. The results have then
been applied by Wang [17] to the solutions of TE waves
guided by a slab of the modulated medium in a uniform
and symmetric environment.

For TM waves, on the other hand, the Hill’s determinant
has been analyzed by Yeh et al. [18], but the harmonic
amplitudes ¢, have not been studied. Recently, a new
formulation for this TM-wave problem has been presented
by Peng and Hessel [197]. This new method of analysis is
particularly useful for analytically detérmining the space-
harmonic amplitudes c.. of the electromagnetic fields.
Thus the boundary value problem for this class of dielec~
tric waveguides can now be rigorously treated for TM

- waves, in a manner analogous to that of TE waves.

B. Rectangularly Modulated Medium

The variation of the medium that forms the grating in
Fig. 1(b) can be described by a rectangular modulation,
which is given by

) =+ (e—ea) D [U@—1d) — Ulx~1ld—di)]

(26)

where U(x) is the unit step function of argument z. In
current practice, &1 = e, and e = ¢, but we shall here Jet
both & and e be arbitrary so as to cover a larger class of
applications.

If the thickness ¢, of the grating region is made infinitely
large, we obtain a periodic array of dielectric slabs, whose
characteristic waves have been examined by Lewis and
Hessel for TM modes [207]. In this case, both the dispersion
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relation for obtaining . and the harmonie amplitudes ¢na
can be found in terms of closed-form solutions. Hence the
solution of the set of equations (21) and their associated
Hill’s determinant (22) can be dispensed with and the
closed forms derived by Lewis and Hessel may be used
instead.

Although TE modes have not been explicitly examined
by Lewis and Hessel, their analysis is analogous to that of
TM modes. Thus, for structures with rectangular corruga-
tions of the type shown in Fig. 1(b), the characteristic
waves that appear in the grating region are known, as was
also the case for structures with a sinusoidally modulated
layer.

C. Curved-Profile Gralings

Because the foregoing two grating profiles possess func-
tions e(z) that are invariant with z, they lend themselves
directly to a rigorous solution of the boundary-value
problem. In contrast, the curved profile of Fig. 1(c) is
generally not separable with respect to the z and z coordi-
nates and has been solved, so far, only by employing
numerical integrations [107]. Nevertheless, the approach
described here can be generalized to also solve curved
profiles by using judicious approximations of these profiles.

To illustrate this generalization, consider the grating
with stanted boundaries in Fig. 3(a). By partitioning the
grating into fine layers and approximating each of these
by rectangular profiles, we obtain a configuration as
indicated in Fig. 3(b). Although now we have more than
a single periodic layer, each one of them has a rectangular
shape like that in Fig. 1(b) and, furthermore, all of the
layers have the same periodicity d. The analysis of the
multiply layered grating then follows as a straightforward
extension of that for the single grating, as discussed in
Section VB. Although this extension is only an approxima-
tion for the original slanted grating, this approximation
can be made as accurate as desired by subdividing the
grating into sufficiently many fine layers.

A much simpler, but probably less accurate, procedure
for treating a curved-profile grating is to average (for

MORE_COMPLICATED GRATINGS

N SO\

SOV

(b)

Fig. 3. Approximation of a curved profile by periodic layers with
rectangular shapes. (a) Actual profile. (b) Approximated profile.
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every ) the permittivity over z inside the grating layer.
Thus, if the profile of the periodic boundary that separates
the two media with permittivities e and e in Figs. 1(¢)
or 3(a) is described by the function

z=h(z) = h(z+ d), for0 < z2<t, (27)
the averaged permittivity becomes
h(x
6(1‘) = ¢ + (62 — 61) (t ) . (28)
g

The problem is then reduced to that of a layer with uni-
form thickness but with varying e(x), as was the case of
the modulated medium in Section ITIC above, except that
e(x) in (28) may contain many sinusoidal terms. Never-
theless, this problem lends itself to the same treatment
involving Hill’s functions as the TM modes discussed by
Yeh et al. [18] and Peng et al. [19].

IV. FIELD SOLUTiON FOR PERIODIC LAYERS

After specifying the fields within the separate layers of a
dielectric grating structure, we may now consider the
boundary-value problem. For this purpose, we simplify
the problem by considering first' a single periodic layer
adjacent to two half spaces, as shown in Fig. 4. In this
case, a single periodic layer of thickness ¢, is left. The
presence of one (or more) uniform layers is then accounted
for in Section V by straightforward modifications of the
formal rigorous solution of the electromagnetic problem
posed by Fig. 4. ‘

Within the periodic (grating) layer, (17) and (23)
imply that the electric and magnetic field components
transverse to z are, respectively, given by

E, =3 [gn™ exp (1kme)

+gm exp (~1km2) 12, Von €xXp (thzn) (29)

H, = 3 [gn™ exp (tkme)

— g exp (—Tkmz) } D Ln €Xp (then2). (30)
The above is a modal representation that regards the
fields in terms of modes that propagate in the z direction,
each mth term in the first summation being an independent
mode with amplitudes g.'® that are to be determined.
Because E, and H, are normal to the propagation (2)
direction, they correspond to either F,, diccuessed in See—
tion II1, or to its partial z derivative, depending on which
of the specific TE or TM modes are considered.

For any given e(z) and for an assumed value of kg, all
of the quantities «,, are known in accordance with the dis-
cussion in Section III. Here V.., and In, refer to voltage
and current amplitudes of space harmonics, respectively,
one sct of which is identical to the set of coefficients cpn
forming the vector ¢. discussed in Section 1II; thus, for
TE modes we have ¢un = Vma, whereas for TM modes
Cmn = Imn. The other set is related to the first set via
Maxwell’s equations, which yield

an = E Zm,n-—r(g)lmr (31)
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where Z,. .. is an impedance that represents the
coupling of the rth harmonic of the magnetic field to the
nth harmonic of the electric field. The value of Z,.n—? is
determined by the specific relationship that relates £, and
H, for each mode via Maxwell’s equations (12) and (14).
For example, in the case of a sinusoidally modulated layer
of the type discussed in Section IITA, we get

Lopo/kem'® Lonr, for TE modes
Zm,n—r(a) = (32>
[]sz(g)/(o\)foegjl:anr + M(an—l,r + 6n+l,r) :la

for TM modes

where §,, is Kronnecker’s delta function. For convenience,
we assume now that we wish to solve the fields due to a
plane wave incident at an angle ¢ from the substrate
region, as shown in Fig. 4. In this case, ks, = &, sin 6 refers
to the wavenumber along z dictated by the incident wave
and, in view of (3) in Section II, the fields in the substrate
are given by

E, = exp (thaox + th0®2) + 3 s, exp (thonr — 1k, @2)
(33)
H, = Y, exp (thppx + ihz)
(34)

— 228 Y, @ exp (thpnd — 1k, 92)
n

where it is assumed that the incident wave amplitude is
unity and the amplitudes s, of the scattered waves have
to be determined. The fields in the air region are given by

Ey =3 anexp (thont + tk.n@2) (35)

H, =3 a,Y,9 exp (thonr + th:n®2) (36)

where k., and k.. were defined in (4) and (6), Y,.©@ is
now the characteristic modal admittance

kon'? /g, for TE modes

Y,9 =
wege/kon'?,

(=g (37)

for TM modes

and the amplitudes a, are to be determined together with



PENG ¢l al.: PERICDIC DIELECTRIC WAVEGUIDES

s and gn® by matching the boundary conditions, which
require that the appropriate components in (29), (30),
and (33)—(36) be continuous at z = 0 and {,. This leads
to the following systems of equations:

b+ 50 = 2 VinaLgn™® + gn ] (38)
Yo®(8on — 8a) = 2 Lonlgmn™ — g1  (39)

> Vil exp (iknty) g™ + exp (— lknly) gn]
= exp (th,.91,)a, (40)

> Laalexp (ikmly) gn™ — €xp (—1kmly) gn ]
= exp (k. 9t,) Y, ?a, (41)

for all n = 0,+1,4+2,:--. These are the four coupled
systems of linear equations that determine the four sets of
unknown scattered harmonic amplitudes a,, s., ¢.", and
¢.7, as follows.

Multiplying (40) by Y. and then subtracting the
resulting equation from (41), we obtain, in matrix nota-
tion,

9 = exp (¢K,t,) R, exp (iKyt,) g™t (42)

where g are column matrices with elements g¢n,®,
exp (1K,t,) is a diagonal matrix with elements dm» exp (¢kmt,)
and R, is the reflection coefficient matrix looking into the
air region at z = {,, as given by

R, = (I+ Y.V '(I— Y.V) (43)

with I and V being square matrices with elements (I) ., =
Inm and (V)mn = Vium, respectively, and ¥, being a
diagonal matrix with elements Y, 68u,.

Next, we multiply (38) by ¥,®, add the result to (39)
and invoke (42) to obtain

S, g = Tee (44)

with
S, = 1— Ryexp (1K) R, exp (1K,t,) (45)
T,=2(I+ Y.V)'Y, (46a)
Ry = (I+ Y, W\~ — Y,V). (46b)

Here e is a column vector with elements 64, Y is a
diagonal matrix with elements ¥,®6u,, while T, and R,
are, respectively, transmission and reflection matrices
looking down into the substrate at z = 0.

When the matrix S, in (44) is singular, the fields are in
resonance as diseussed in Section V. For nonresonant
fields, the inverse of S, exists and g is then uniquely
determined via (44) for plane-wave incidence. Using (42)
and (44), we then obtain from (38) that the scattered field
amplitudes s, in the substrate are given by the column
vector

s = Rye (47a)

where R, is a reflection matrix looking up at z = 0, as
given by

R, = T '[exp (iK,t,) Ry exp (1Kyt,) — Ro1S,To. (47b)
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If required, the scattered amplitudes a, in the air can be
similarly obtained via (40) or (41), together with (42)
and (44). This would complete the determination of all the
scattered amplitudes a,, g, and s,.

V. THE FIELDS GUIDED BY DIELECTRIC
GRATINGS

As discussed in the Introduction, the fields of greatest
interest are those that can be supported by periodic thin-
film structures in the absence of any wave incident from
the air or the substrate. These fields are those of the sur-
face and leaky waves deseribed in Section IT, which repre-
sent free-resondnt solutions of the boundary-value problem
under consideration. We shall discuss these solutions first
for the canonic structure shown in Fig. 4, after which we
shall generalize the result to structures with an arbitrary
number of layers in addition to the single periodic layer of
Fig. 4.

A. Guuding by o Single Periodic Layer

In the absence of a wave incident from an exterior
region, we have a null vector instead of e in (44), which is
then satisfied only if the determinant of S, vanishes,
namely,

det (S,) = det[1 — Ryexp (1K,t,) R, exp (1K t,) ] = 0.
(48)

This represents the dispersion relation for the guided
(surface or leaky) waves of the grating in Fig. 4. This
relation vields the unknown eigenvalues k.. For any such
ka0, we can then find all ¢, in terms of one of them by
replacing e by 0 in (44). All of the other amplitudes a,,
g."?, and s, ean thereafter be determined as discussed at
the end of the preceding section.

Because the foregoing analysis regards the fields as
propagating along the z direction, which is normal to the
boundaries, the result of (48) represents the transverse
resonance condition for the present configuration. To
understand the physical significance of this condition, let
us consider the special case when the periodic layer in
Fig. 4 is replaced by a uniform slab (with no periodic
variation). In this case, (48) reduces to

1 — rry exp (2ixt,) = 0 (49)

where 7, and r, are reflection coefficients looking into the
substrate and air regions, respectively, at z = 0 and ¢,.
Equation (49) states the familiar (resonant, surface-wave)
condition that the wave remains unchanged after a round-
trip travel across the layer, the trip including one reflection
at each of the two boundaries [21]. Thus (48) for the
grating layer is a gencralization of (49) for the uniform
layer. The transition from scalars in (49) to matrices in
(48) represents the fact that the presence.of periodicity
introduces energy coupling from the fundamental (n = 0)
field to its higher order (n 5 0) space harmonies.

In the ease of a uniform layer, (49) is a transcendental
equation, which may be solved graphically or numerically
to find the propagation factor along the structure. For a
periodic layer, (48) is considerably more complicated
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because it involves an infinite determinant which must be
“truncated to solve for the unknown propagation factor
. This determinant is also of the Hill’s type, as was the
case in (22), so that its truncation can be carried out very
accurately by numerical computer techniques, as dis-
cussed further in Section VL.

B. Guiding by Multilayered Periodic Structures

The results discussed in the preceding section may now
be extended to structures that possess several layers which
are additional to the single nonuniform (periodie) layer
discussed above. For this purpose, we first recognize that
the electromagnetic problem of the single periodic layer
may be rigorously described by the equivalent transverse
network shown in Fig. 5(a). In this network, each of the

semi-infinite transmission line in the air or substrate

regions represents one of the modes; the characteristic
admittance Y, and propagation factor k..’ have been
defined in (37) and (6), respectively. All of these trans-
mission lines are connected to the grating region, which is
now represented schematically by the box marked B in
Fig. 5(a). ‘

If desired, the network describing the scattering proper-
ties of the box marked B can be syrthesized along the
lines discussed in [227] for the case of an interface to a
sinusoidally modulated medium. However, this synthesis
is not necessary for the purposes of the present work be-
cause we may regard the box marked B in Fig. 5(a) to be
defined by (47) for S,. We note, on the other hand, that
the matrix S, describes the coupling of 4ll of the modes to
each other via the periodic properties of the grating region.

To generalize the result to additional uniform layers,
consider now the structures described in Fig. 1{(a) and
1(b). These configurations can be represented by the
equivalent network of Fig. 5(b), which is obtained by
simply interposing an appropriate set of transmission lines
of lengths ¢; between the grating ahd substrate regions.
In this case, we may look down at the plane z = —i; and
define a reflection coefficient

V, 9 — V,®

B AR A 5

Pn
By utilizing p., we obtain that the input admittance
Y. at z = 0 in every transmission line is given by

1 — pnexp (26k.,Nty)
1+ pnexp (2Pt "
We can use now (45) for R, and replace Y,© therein

with Y, to gét the modified reflection matrix R, for
the (two-layer) configurations of Fig. 1 in the form

V,6n —

(51)

R = (I+ Y, V)*(I — Y,V) (52)

where Y., is a diagonal admittance matrix with elements
Y, (™8, By next taking R, instead of R, in (48), the
transverse resonance condition is extended to the geome-
tries of Tig. 1, which possess the additional uniform layer
of thickness ¢;.
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Fig. 5. Equivalent transverse .networks for the analysis of
dielectric-grating structures. (a) Network for the single-layer con-
figurations of Fig. 3. (b) Network for the structures shown in
Fig. 1.

The. above procedure can, of course, be generalized to
any number of layers that are added below the film layer.
As suggested by Fig. 5, all that is needed is to modify
Ry s0 as to take into account the additional layers. As
such a modified expression for Ry’ involves the input
admittances Y, looking into a stack consisting of an
drbitrary number of umniform layers, the extension is
straightforward. The same procedure can be utilized if
additional uniform layers are placed above (rather than
below) the grating region. In this case, the reflection
matrix R, must be modified to a matrix R, in & manner
analogous to that discussed above for Ry. Of course,
uniform layers may be accommodated both below and on
top of the grating layer by employing the appropriate
modified expressions Ry and R, at the respective bound-
aries of the grating region.

Finally, additional periodic (rather than uniform) layers
can also be accommodated in order to treat structures
discussed in Section ITIC. This extension is somewhat
more complicated because now we connect additional boxes
of the form marked B in Fig. 5 rather than just transmis-
sion line sections. In matrix notation, this extension is
nevertheless conceptually straightforward and the result-
ing expressions are relatively simple if all the periodic
layers possess the same periodicity d, as prescribed in
Section ITIC. As such an extension is beyond the scope of
this paper, the interested reader should consult reference
[23] for further details.
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VI. DERIVATION OF NUMERICAL RESULTS

The application of the techniques described above in-
volves the solution of the secular equation, which in this
case is given by the vanishing of the infinite determinant
of §;in (45). We recall that all of the parameters entering
into S, are assumed known, except for ko which is regarded
as the unknown variable for any given frequency w. In
general, however, the quantities «, and ¢., (in the grating
region) are not known explicitly, so that the determina-
tion of their values is part of the computation process for
finding £.o.

A first step in the programming of a computer routine
for solving the transverse resonance (secular) relation is
to provide a subroutine for the calculation of k., and cm.
for any given combination of k, and k.. As discussed in
Section ITI, such a subroutine is generally dependent on
the specific grating structure, but it usually involves the
calculation of a suitably truncated determinant of the
infinite matrix defined in (22). After finding the eigen-
values «,, of this truncated matrix, the pertinent Fourier
coefficients ¢, can be determined from their defining rela-
tion (21). Of course, the accuracy of all «, and cnn is
dependent on the order of the truncated determinant. In
general, this accuracy increases with the order; as the
determinant is of the Hill’s type, the truncation needs not
be unduly large for the accuracies required by practical
considerations. However, great care must be exercised
when choosing the rows and columns of the truncated
determinant because an improper choice may considerably
degrade the ultimate accuracy that is obtained. This is
particularly true for calculations involving waves at or
near a Bragg condition in the grating region, i.e., for

values of Bud = Nw(N = £1,42,43,---). A discussion

on this question for the specific case of a sinusoidally
modulated medium is given in [22, appendix]; it is
expected that the considerations presented there apply
also to a more general variation of periodic variations.

The subroutine for determining all required &, and cmx
is then introduced into the program that handles the
calculation of k.. As was the case for the subroutine, the
program for finding k.o also involves the calculation of a
suitably truncated determinant of an infinite matrix S,,
which is again of the Hill’s type. Hence the considerations
for truncating S, are similar to those for the subroutine
mentioned above. However, when solving for k,, by using
(48) for the truncated determinant, the computer calcula-
tion (usually involving Newton’s iteration method) may
converge very slowly This happens especially with con-
figurations of the type shown in Fig. 1 for which the wave-
guiding process is primarily determined by the uniform
layer rather than by the grating layer. In such cases, the
calculation of k.. is more easily and more aceurately per-
formed by utilizing another matrix S instead of S,.

This is obtained by noting from Fig. 5(b) that at z = 0
in the uniform layer, the field amplitudes f.(¥ are related
by

O = R, f (53)
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Fig. 6. Variation of g¢d for the fundamental TE and TM modes
along a modulated layer as shown in Fig. 4 with ¢, = 1, ¢, = 3.61,
& =225, M < 0.5, and ¢ = 2d/r. The insert shows the first
stopband for M = 0.08.

where f& are column vectors with elements f,® and R,
is given by R, in (47b) with the subseript s replaced by f
in (46). On the other hand, at 2 = —{;, the same ampli-
tudes satisfy

Fa® = pafa® exp (12 Dty) (54)

where p, s given in (50). Inserting (54) into (53), we find

S;f® = [1 — exp (izkftf)Rfﬁojf“‘) =0 (55)

where S; is defined by the matrix in the square brackets,
exp (12kst;) and R, are diagonal matrices with elements
Smin €XP (12 10 Vty) and d,pps, respectively. Here det (Sy) =
0 expresses the transverse-resonance condition inside
the film layer in a manner analogous to that whereby
det (S,) = 0 expresses this condition inside the grating
layer.

By thus choosing a suitably truncated matrix Sy or S,
the computer program first finds ko by solving (48) or
(565), after which the amplitudes a, and s, can be found
by solving the simultaneous set of equations (38)—(41).
The values of ky = Bo + %, together with the magnitudes
of all a, and s,, usually complete the information needed
for the design of a particular dielectric grating structure.

To illustrate some of the results that can be obtained
by the techniques discussed above, we present below
several calculated curves for gratings of the type shown in
Figs. 1(b) and 4.

The Brillouin diagram for ‘a modulated layer is given
in Fig. 6 for the lowest (fundamental) TE, and TM,
modes. As predicted by the argument given in connection
with Fig. 2, these dispersion curves show that the wave-
number G, is very closely equal to the value G,, of the
surface wave along a uniform (3 = 0) layer. In fact, for
values of M < 0.5, it is not possible to distinguish 8, from
B« on the scale of Fig. 6. In agreement with the theory
of surface waves along uniform layers [217], the dispersion
curves in Fig. 6 lie between the straight lines OB and OC
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Fig. 7. Variation of the attenuation parameter o with frequency
for the same grating as that in Fig. 6. The range shown allows
for either a single beam in the substrate (e.g., point @ in Fig. 6)
or for two beams, one each in the substrate and air regions (e.g.,
point R in Fig. 6) Inside the stopband, « becomes very large
and reaches a peak which is well outside the vertical range shown.

through the origin, whose slope is given by cot™ (e!/?)
and cot™! (¢,'/2), respectively.

The presence of periodicity manifests itself most strongly
by causing stopbands at frequencies for which a Bragg
condition Bed = No(N = £1,+2,-+-) is satisfied. Such
a stopband region is illustrated in Fig. 6 by insert A4,
which shows both 8,d and ad around Bed = = in magnified
form. For wavelengths X\ inside this stopband, the field
~ of the surface wave is in the form of a decaying standing-
wave with respect to the » direction.

Besides producing stopbands, the presence of periodicity
may also change the surface waves into leaky waves, as
discussed in Section II. To assess this, we reflect the lines
OB and OC about 8yd = = to obtain FG and HG. By taking
into account the slopes of the various lines in conjunction
with (6), we may verify that, for 7 = a and s, all k.. are
pure imaginary inside the triangular region OLG. However,
k. is real outside this triangle, whereas both k. 1 and
k21 are real outside the larger triangular region OLG.
Thus at frequencies for which the operation point is inside
the smaller triangle OL@G (e.g., point P), the surface wave
remains bound even if periodicity is present. As frequency
increases and the operation point crosses the line FG (e.g.,
point @), a radiation beam occurs in the substrate and the
surface wave is changed to a leaky wave. For frequencies
that are high enough so that the operating point is above
the D@ line (e.g., point R), radiation beams occur in both
substrate and air regions.

The attenuation parameter o, which is due either to a
stopband or to power leakage, is shown in Fig. 7. As fre-
quency varies, a starts by being zero in the surface-wave
region; however, « is nonzero and peaks strongly in the
stopband region. This stopband behavior is of importance
in the operation of distributed-feedback lasers and the
maximum value of « determines the length required for
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Fig. 8. Variation of the space-harmonic amplitudes a, with fre-
quency for the TE, made along a rectangular grating.

effective lasing conditions. Outside the stopband. « is
nonzero if the frequency is high enough to produce radia-
tion, i.e., the wave is leaky. As seen in Fig. 7, « varies
slowly with frequency in the leaky-wave region, except in
the vicinity of certain eritical values of d/\. These critical
values of d/\ are associated with the presence of Wood’s
anomalies along gratings [247]; in the present case, these
correspond to the onset of additional leaky-wave beams
in the air or substrate regions. However, for TM modes,
additional nulls may appear for «, which are due to a
Brewster-angle phenomenon for a higher (n ¢ 0) harmonic
ingside the grating layer. Such a case is shown by the null

‘in a for TM, at about d/)\ = 0.43.

For both surface-wave and leaky-wave applications,
the amplitudes a, are of great interest because their
magnitudes determine the efficieney of devices that employ
waves guided by periodic structures. We therefore show
in Fig. 8 the variation of a—, a_1, and a: (with @, = 1) for
the fundamental TE, mode along a rectangular grating of
the type shown in Fig. 1(b). We reeall that a, denotes the
amplitude of the nth space harmonic at the air-grating
boundary z = ¢,. As the Brillouin diagram is basically
similar to that already given in Fig. 6, it is omitted here,
but its pertinent stopband and leaky wave regions are
indicated in Fig. 8. It is noted that the curves for a,
undergo rapid variations close to the stopband edges. Also,
we note that | a1 | = ao = 1and |a_z | = | a; | within the
stopband, in agreement with the fact that the field is a
standing wave in the stopband.

Although some of the foregoing curves could have been
calculated by the approximate techniques reported in the
past [2]-[5], [71-[9], [12], their accuracy should be
checked by a rigorous method such as that presented here.
To show the importance and the generality of the method
discussed in this paper, we show in Fig. 9 the variation of
o for the same grating as that of Fig. 8, except that now
the wavelength A is assumed fixed and the grating thickness
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Fig. 9. Variation of o with the grating thickness ¢, for the same
grating as in Fig. 8. The solid curve shows the exact result whereas
the dashed line refers to a result obtained by a perturbation
analysis.

t, varies. In this case, a perturbation analysis [5] would
yield the dashed curve, for which « increases continuously
with #,. In contrast, our rigorous treatment yields the
solid curve, which indicates that a) reaches a saturation
value close to 0.02 for values of {,/A > 0.2.

The behavior of the solid curve in Fig. 9 can easily be
explained by noting that the basic surface wave along a
uniform (¢, = 0) layer has an evanescent field in the air
region. When increasing ¢, from zero, we perturb this sur-
face wave field by adding material on top of the uniform
film of thickness ¢;. At first, this material appears in a
region with strong fields and therefore the effect on « is
appreciable. However, as {, increases further, the addi-
tional material appears in regions where the field has
gradually decayed until, at about ¢;/x = 0.2, any further
addition of material occurs in regions where the field is
exponentially small. Consequently, the effect of increasing
t, beyond 0.2) is negligible and « approaches a constant.

The above is only one example of the serious discrepan-
cies that may occur between an exact result and that
obtained by approximate techniques. Although the method
presented here may be somewhat cumbersome to use, such
a method is essential if one wishes to verify the validity of
simpler but approximate results of unknown accuracy.
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